Mental Math
Fact Learning
Mental Computation
Estimation
Grade 4
Teacher’s Guide
Table of Contents

Mental Math in the Elementary Mathematics Curriculum 1
Definitions and Connections ... 6
Rationale ... 7
Teaching Mental Computation Strategies ... 7
Introducing Thinking Strategies to Students ... 8
Practice and Reinforcement .. 10
Response Time .. 11
Struggling Students and Differentiated Instruction 12
Combined Grade Classrooms ... 13
Assessment .. 14
Timed Tests of Basic Facts ... 14
Parents and Guardians: Partners in Developing Mental Math Skills 15
Fact Learning ... 17
 Reviewing Addition Facts and Fact-Learning Strategies 19
 Reviewing Subtraction Facts and Fact-Learning Strategies 21
 Multiplication Fact-Learning Strategies ... 22
 Multiplication Facts With Products to 81 27
Mental Computation ... 29
 Front-end Addition ... 31
 Break Up and Bridge .. 33
 Finding Compatibles .. 34
 Compensation .. 36
 Make 10s, 100s or 1000s ... 37
Mental Computation – Subtraction ... 39
 Using Subtraction Facts for 10s, 100s and 1000s 39
 Back Down Through 10/100 ... 41
 Up Through 10/100 ... 42
 Compensation .. 43
 Break Up and Bridge .. 44
Mental Computation – Multiplication ... 45
 Multiplication by 10 and 100 ... 45
Estimation – Addition and Subtraction .. 49
 Rounding ... 50
 Adjusted Front-end ... 53
 Near Compatibles .. 54
Appendixes .. 55
 Thinking Strategies in Mental Math .. 57
 Scope and Sequence .. 61
Mental Math in the Elementary Mathematics Curriculum

Mental math in this guide refers to fact learning, mental computation, and computational estimation. The Atlantic Canada Mathematics Curriculum supports the acquisition of these skills through the development of thinking strategies across grade levels.

Pre-Operational Skills

Many children begin school with a limited understanding of number and number relationships. Counting skills, which are essential for ordering and comparing numbers, are an important component in the development of number sense. Counting on, counting back, concepts of more and less, and the ability to recognize patterned sets, all mark advances in children’s development of number ideas.

Basic facts are mathematical operations for which some students may not be conceptually prepared.

Basic facts are mathematical operations for which some students may not be conceptually prepared. As a minimum, the following skills should be in place before children are expected to acquire basic facts.

- Students can immediately name the number that comes after a given number from 0-9, or before a given number from 2-10.
- When shown a familiar arrangement of dots ≤ 10 on ten frames, dice, or dot cards, students can quickly identify the number without counting.
• For numbers \(\leq 10 \) students can quickly name the number that is one-more, one-less; two-more, two-less. (the concept of less tends to be more problematic for children and is related to strategies for the subtraction facts)

Mental mathematics must be a consistent part of instruction in computation from primary through the elementary and middle grades.
<table>
<thead>
<tr>
<th>Curriculum Outcomes</th>
<th>Thinking Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td></td>
</tr>
</tbody>
</table>
| B7- use mental strategies to find sums to 18 and differences from 18 or less | P. 28
• Doubles Facts for addition and subtraction facts |
| B8- memorize simple addition and/or subtraction facts from among those for which the total is 10 or less | P. 36
• Using patterns to learn the facts
• Commutative property (3+2 = 2+3) |
| C5- use number patterns to help solve addition and subtraction sentences | |
| **Grade 2** | |
| B5- develop and apply strategies to learn addition and subtraction facts | P. 22
• Doubles plus 1
• Make 10 (“bridging to 10”)
• Two-apart facts; double in-between
• Subtraction as “think addition”
• Compensation
• Balancing for a constant difference |
| B11- estimate the sum or difference of two 2-digit numbers | P. 30 (Estimation)
• Rounding both numbers to the nearest 10
• Round one number up and one number down
• Front-end estimation |
| **Grade 3** | |
| B11/12- mentally add and subtract two-digit and one-digit numbers, and rounded numbers. | P. 34
• Make 10
• Compatible numbers (“partner” numbers)
• Front-end addition
• Back up through ten (“counting on”)
• Compensation
• Balancing for a constant difference |
| B9- continue to estimate in addition and subtraction situations | |
| B10- begin to estimate in multiplication and division situations | |
| C3 - use and recognize the patterns in a multiplication table | P. 28
• Commutative property for multiplication (3x2 = 2x3)
• Division as “think multiplication”
• Helping facts |
<table>
<thead>
<tr>
<th>Curriculum Outcomes</th>
<th>Thinking Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 4</td>
<td></td>
</tr>
<tr>
<td>B9 - demonstrate a knowledge of the multiplication facts to 9 x 9</td>
<td>P. 32 • Doubles • Clock-facts for 5’s • Patterns for 9’s • Helping facts</td>
</tr>
<tr>
<td>B14 - estimate the product or quotient of 2- or 3-digit numbers and single digit numbers</td>
<td>P. 36 (Estimation) • Rounding • Front-end • Clustering of Compatibles</td>
</tr>
<tr>
<td>B15 - mentally solve appropriate addition and subtraction computations</td>
<td>P. 38 • Compatibles for division</td>
</tr>
<tr>
<td>B16 - mentally multiply 2-digit numbers by 10 or 100</td>
<td>P. 40 • Front-end addition • Compensation • Up through 100 (counting on) • Back down through 100 (counting back) • Compatible numbers • Place-value-change strategy for mentally multiplying by 10, 100</td>
</tr>
<tr>
<td>C2 - apply the pattern identified when multiplying by increasing powers of 10</td>
<td></td>
</tr>
</tbody>
</table>

- P. 32: Doubles, Clock-facts for 5’s, Patterns for 9’s, Helping facts
- P. 36 (Estimation): Rounding, Front-end, Clustering of Compatibles
- P. 38: Compatibles for division
- P. 40: Front-end addition, Compensation, Up through 100 (counting on), Back down through 100 (counting back), Compatible numbers, Place-value-change strategy for mentally multiplying by 10, 100
Curriculum Outcomes

Grade 5

<table>
<thead>
<tr>
<th>B10-</th>
<th>estimate sums and differences involving decimals to thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11-</td>
<td>estimate products and quotients of two whole numbers</td>
</tr>
<tr>
<td>B12-</td>
<td>estimate products and quotients of decimal numbers by single-digit whole numbers</td>
</tr>
<tr>
<td>B15-</td>
<td>multiply whole numbers by 0.1, 0.01, and 0.001 mentally</td>
</tr>
<tr>
<td>C2-</td>
<td>recognize and explain the pattern in dividing by 10, 100, 1000 and in multiplying by 0.1, 0.01 and 0.001</td>
</tr>
<tr>
<td>B13-</td>
<td>perform appropriate mental multiplications with facility</td>
</tr>
</tbody>
</table>

By grade 5, students should possess a variety of strategies to compute mentally. It is important to recognize that these strategies develop and improve over the years with regular practice.

Thinking Strategies

<table>
<thead>
<tr>
<th>P. 40 to 41 (Estimation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rounding one up, one down</td>
</tr>
<tr>
<td>• Looking for compatibles that make approximately 10, 100, 1000</td>
</tr>
<tr>
<td>• Front-end</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Place-value-change strategy for mentally multiplying by 10, 100, 1000</td>
</tr>
<tr>
<td>• “Halve-double” strategy for multiplication</td>
</tr>
<tr>
<td>• Front-end multiplication</td>
</tr>
<tr>
<td>• Compensation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. 46 to 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Place-value-change strategy for mentally dividing by 10, 100, 1000</td>
</tr>
<tr>
<td>• Place-value-change strategy for mentally multiplying by 0.1, 0.01, 0.001</td>
</tr>
</tbody>
</table>

Grade 6

<table>
<thead>
<tr>
<th>B9-</th>
<th>estimate products and quotients involving whole numbers only, whole numbers and decimals, and decimals only</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10-</td>
<td>divide numbers by 0.1, 0.01, and 0.001 mentally</td>
</tr>
<tr>
<td>C2-</td>
<td>use patterns to explore division by 0.1, 0.01, and 0.001</td>
</tr>
<tr>
<td>B11-</td>
<td>calculate sums and differences in relevant contexts using the most appropriate method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. 40 (Estimation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rounding one up, one down for multiplication</td>
</tr>
<tr>
<td>• Front-end method for multiplication and division</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. 42 and 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Place-value-change strategy for mentally dividing by 0.1, 0.01, 0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Compensation in multiplication</td>
</tr>
<tr>
<td>• Front-end</td>
</tr>
</tbody>
</table>

Students should perform mental computations with facility using strategies outlined in the Mental Math Guides.
Definitions and Connections

Fact learning refers to the acquisition of the 100 number facts relating to the single digits 0-9 in each of the four operations. Mastery is defined by a correct response in 3 seconds or less.

Mental computation refers to using strategies to get exact answers by doing most of the calculations in one’s head. Depending on the number of steps involved, the process may be assisted by quick jottings of sub-steps to support short term memory.

Computational estimation refers to using strategies to get approximate answers by doing calculations mentally.

Students develop and use thinking strategies to recall answers to basic facts. These are the foundation for the development of other mental calculation strategies. When facts are automatic, students are no longer using strategies to retrieve them from memory.

Basic facts and mental calculation strategies are the foundations for estimation. Attempts at estimation are often thwarted by the lack of knowledge of the related facts and mental math strategies.

Computational Fluency
Rationale

In modern society, the development of mental computation skills needs to be a goal of any mathematical program for two important reasons. First of all, in their day-to-day activities, most people's calculation needs can be met by having well developed mental computational processes. Secondly, while technology has replaced paper-and-pencil as the major tool for complex computations, people still need to have well developed mental strategies to be alert to the reasonableness of answers generated by technology.

In modern society, the development of mental computation skills needs to be a goal of any mathematics program.

Besides being the foundation of the development of number and operation sense, fact learning is critical to the overall development of mathematics. Mathematics is about patterns and relationships and many of these are numerical. Without a command of the basic facts, it is very difficult to detect these patterns and relationships. As well, nothing empowers students more with confidence, and a level of independence in mathematics, than a command of the number facts.

...nothing empowers students more with confidence, and a level of independence in mathematics, than a command of the number facts.

Teaching Mental Computation Strategies

The development of mental math skills in the classroom should go beyond drill and practice by providing exercises that are meaningful in a mathematical sense. All of the strategies presented in this guide emphasize learning based on an understanding of the underlying logic of mathematics.
While learning addition, subtraction, multiplication and division facts, for instance, students learn about the properties of these operations to facilitate mastery. They apply the commutative property of addition and multiplication, for example, when they discover that $3 + 7$ is the same as $7 + 3$ or that $3 \times 7 = 7 \times 3$. Knowing this greatly reduces the number of facts that need to be memorized. They use the distributive property when they learn that 12×7 is the same as $(10 + 2) \times 7 = (7 \times 10) + (2 \times 7)$ which is equal to $70 + 14 = 84$.

Understanding our base ten system of numeration is key to developing computational fluency. At all grades, beginning with single digit addition, the special place of the number 10 and its multiples is stressed.

Understanding our base ten system of numeration is key to developing computational fluency. At all grades, beginning with single digit addition, the special place of the number 10 and its multiples is stressed. In addition, students are encouraged to add to make 10 first, and then add beyond the ten. Addition of ten and multiples of ten is emphasized, as well as multiplication by 10 and its multiples.

Connections between numbers and the relationship between number facts should be used to facilitate learning. The more connections that are established, and the greater the understanding, the easier it is to master facts. In multiplication, for instance, students learn that they can get to 6×7 if they know 5×7, because 6×7 is one more group of 7.

Introducing Thinking Strategies to Students

In general, a strategy should be introduced in isolation from other strategies. A variety of practice should then be provided until it is mastered, and then it should be combined with other previously learned strategies. Knowing the name of a strategy is not as important as knowing how it works. That being said, however, knowing the names of the strategies certainly aids in classroom communication. In the mental math guides for each grade, strategies are consistently named; however, in some other resources, you may find the same strategy called by a different name.

When introducing a new strategy, use the chalkboard, overhead or LCD
projector, to provide students with an example of a computation for which the strategy works. Are there any students in the class who already have a strategy for doing the computation in their heads? If so, encourage them to explain the strategy to the class with your help. If not, you could share the strategy yourself.

Explaining the strategy should include anything that will help students see its pattern, logic, and simplicity. That might be concrete materials, diagrams, charts, or other visuals. The teacher should also “think aloud” to model the mental processes used to apply the strategy and discuss situations where it is most appropriate and efficient as well as those in which it would not be appropriate at all.

In the initial activities involving a strategy, you should expect to have students do the computation the way you modeled it. Later, however, you may find that some students employ their own variation of the strategy. If it is logical and efficient for them, so much the better. Your goal is to help students broaden their repertoire of thinking strategies and become more flexible thinkers; it is not to prescribe what they must use.

You may find that there are some students who have already mastered the simple addition, subtraction, multiplication and division facts with single-digit numbers. Once a student has mastered these facts, there is no need to learn new strategies for them. In other words, it is not necessary to re-teach a skill that has been learned in a different way.
On the other hand, most students can benefit from the more difficult problems even if they know how to use the written algorithm to solve them. The emphasis here is on mental computation and on understanding the place-value logic involved in the algorithms. In other cases, as in multiplication by 5 (multiply by 10 and divide by 2), the skills involved are useful for numbers of all sizes.

Practice and Reinforcement

In general, it is the frequency rather than the length of practice that fosters retention. Thus daily, brief practices of 5-10 minutes are most likely to lead to success.

In general, it is the frequency rather than the length of practice that fosters retention. Thus daily, brief practices of 5-10 minutes are most likely to lead to success. Once a strategy has been taught, it is important to reinforce it. The reinforcement or practice exercises should be varied in type, and focus as much on the discussion of how students obtained their answers as on the answers themselves.

The selection of appropriate exercises for the reinforcement of each strategy is critical. The numbers should be ones for which the strategy being practiced most aptly applies and, in addition to lists of number expressions, the practice items should often include applications in contexts such as money, measurements and data displays. Exercises should be presented with both visual and oral prompts and the oral prompts that you give should expose students to a variety of linguistic descriptions for the operations. For example, 5 + 4 could be described as:

- the sum of 5 and 4
- 4 added to 5
- 5 add 4
- 5 plus 4
- 4 more than 5
- 5 and 4 etc.
Response Time

• Basic Facts
In the curriculum guide, fact mastery is described as a correct response in 3 seconds or less and is an indication that the student has committed the facts to memory. This 3-second-response goal is a guideline for teachers and does not need to be shared with students if it will cause undue anxiety. Initially, you would allow students more time than this as they learn to apply new strategies, and reduce the time as they become more proficient.

This 3-second-response goal is a guideline for teachers and does not need to be shared with students if it will cause undue anxiety.

• Mental Computation Strategies
With other mental computation strategies, you should allow 5 to 10 seconds, depending on the complexity of the mental activity required. Again, in the initial stages, you would allow more time, and gradually decrease the wait time until students attain a reasonable time frame. While doing calculations in one’s head is the principal focus of mental computation strategies, sometimes in order to keep track, students may need to record some sub-steps in the process. This is particularly true in computational estimation when the numbers may be rounded. Students may need to record the rounded numbers and then do the calculations mentally for these rounded numbers.

In many mental math activities it is reasonable for the teacher to present a mental math problem to students, ask for a show of hands, and then call on individual students for a response. In other situations, it may be more effective when all students participate simultaneously and the teacher has a way of checking everyone’s answers at the same time. Individual response boards or student dry erase boards are tools which can be used to achieve this goal.
It is imperative that teachers identify the best way to maximize the participation of all students in mental math activities. Undoubtedly there will be some students who experience considerable difficulty with the strategies assigned to their grade and who require special consideration. You may decide to provide these students with alternative questions to the ones you are expecting the others to do, perhaps involving smaller or more manageable numbers. Alternatively, you may just have the student complete fewer questions or provide more time.

There may be students in the upper grades who do not have command of the basic facts. For the teacher, that may mean going back to strategies at a lower grade level to build success, and accelerating them vertically to help students catch up. For example, if the students are in grade 6 and they don’t yet know the addition facts, you can find the strategies for teaching them in the grade 2 Mental Math Guide and the grade 2 Curriculum Guide. The students, however, are more intellectually mature, so you can immediately apply those same strategies to tens, hundreds, and thousands, and to estimation of whole numbers and decimal sums.

The more senses you can involve when introducing the facts, the greater the likelihood of success for all students, but especially for students experiencing difficulty.
Many of the thinking strategies supported by research and outlined in the curriculum advocate for a variety of learning modalities. For example:

- **Visual** (images for the addition doubles; hands on a clock for the “times-five” facts)
- **Auditory** (silly sayings and rhymes: “6 times 6 means dirty tricks; 6 x 6 is 36”)
- **Patterns in Number** (the product of an even number multiplied by 5 ends in 0 and the tens digit is half of the number being multiplied)
- **Tactile** (ten frames, base ten blocks)
- **Helping Facts** (8 x 9 = 72, so 7 x 9 is one less group of 9; 72 - 9 = 63)

Whatever differentiation you make it should be to facilitate the student’s development in mental computation, and this differentiation should be documented and examined periodically to be sure it is still necessary.

Combined Grade Classrooms

What you do in these situations may vary from one strategy to another. Sometimes the students may be all doing the same strategy, sometimes with the same size or type of number, sometimes with different numbers. For example, in a combined grade 2-3 class, students might be working on the “make ten” strategy for addition. The teacher would ask the grade 2 students questions such as 9 + 6 or 5 + 8, while the grade 3 students would be given questions such as 25 + 8 or 39 + 6; the same strategy is applied, but at different levels of difficulty.

Other times, you may decide to introduce different strategies at different times on the first day, but conduct the reinforcements at the same time on subsequent days using the appropriate exercises for each grade level.

It is important to remember that there will be students in the lower grade who can master some, or all, the strategies expected for the higher grade, and some students in the higher grade who will benefit from the reinforcement of the strategies from the lower grade.
Assessment

Your assessment of mental computation should take a variety of forms. In addition to the traditional quizzes that involve students recording answers to questions that you give one-at-a-time in a certain time frame, you should also record any observations you make during the practice sessions. You should also ask students for oral responses and explanations, and have them explain strategies in writing. Individual interviews can provide you with many insights into a student’s thinking, especially in situations where paper-and-pencil responses are weak.

Timed Tests of Basic Facts

Some of the former approaches to fact learning were based on stimulus-response; that is, the belief that students would automatically give the correct answer if they heard the fact over-and-over again. No doubt, many of us learned our facts this way. These approaches often used a whole series of timed tests of 50 to 100 items to reach the goal.

In contrast, the thinking strategy approach prescribed by our curriculum is to teach students strategies that can be applied to a group of facts with mastery being defined as a correct response in 3 seconds or less. The traditional timed test would have limited use in assessing this goal. To be
sure, if you gave your class 50 number facts to be answered in 3 minutes and some students completed all, or most, of them correctly, you would expect that these students know their facts. However, if other students only completed some of these facts and got many of those correct, you wouldn’t know how long they spent on each question and you wouldn’t have the information you need to assess the outcome. You could use these sheets in alternative ways, however.

For example:

• Ask students to quickly circle the facts which they think are “hard” for them and just complete the others. This type of self assessment can provide teachers with valuable information about each student’s level of confidence and perceived mastery.

• Ask students to circle and complete only the facts for which a specific strategy would be useful. For example, circle and complete all the “double-plus-1” facts.

• Ask them to circle all the “make ten” facts and draw a box around all “two-apart” facts. This type of activity provides students with the important practice in strategy selection and allows the teacher to assess whether or not students recognize situations for which a particular strategy works.

Parents and Guardians: Partners in Developing Mental Math Skills

Parents and guardians are valuable partners in reinforcing the strategies you are developing in school. You should help parents understand the importance of these strategies in the overall development of their children’s mathematical thinking, and encourage them to have their children do mental computation in natural situations at home and out in the community. Through various forms of communication, you should keep parents abreast of the strategies you are teaching and the types of mental computations they should expect their children to be able to do.
Fact Learning
A. Fact Learning - Addition

- Reviewing Addition Facts and Fact Learning Strategies

Mastery of the addition facts is the expectation in Grade 2. This knowledge is then applied to 10s, 100s, and 1000s in Grade 3. If $3 + 4 = 7$, then $30 + 40 = 70$, $300 + 400 = 700$, and $3000 + 4000 = 7,000$. Note: The sums of 10s are a little more difficult than the sums of 100s and 1000s because when the answer is more than ten 10s, students have to translate the number. For example, for $70 + 80$, 7 tens and 8 tens are 15 tens, or one hundred fifty. At the beginning of grade 4, it is important to ensure that students review the addition facts to 18 and the fact learning strategies.

At the beginning of grade 4, it is important to ensure that students review the addition facts to 18 and the fact learning strategies.

Examples

The following are the addition fact strategies with examples, and examples of the same facts applied to 10s, 100, and 1000s:

a) **Doubles Facts**: $4 + 4, 40 + 40, 400 + 400, \text{ and } 4000 + 4000$

b) **Plus One Facts**: (next number) $5 + 1, 50 + 10, 500 + 100, 5000 + 1000$

c) **Plus Two Facts**: (2-more-than facts) $7 + 2, 70 + 20, 700 + 200, 7000 + 2000$

d) **Plus Three Facts**: $6 + 3, 60 + 30, 600 + 300, 6000 + 3000$

e) **Near Doubles**: (1-apart facts) $3 + 4, 30 + 40, 300 + 400, 3000 + 4000$

f) **Plus Zero Facts**: (no-change) $8 + 0, 80 + 0, 800 + 0, 8000 + 0$

g) **Doubles Plus 2 Facts**: (double in-between or 2-apart facts) $5 + 3, 50 + 30, 500 + 300, 5000 + 3000$

h) **Make 10 Facts**: $9 + 6, 90 + 60, 900 + 600; 8 + 4, 80 + 40, 800 + 400$

i) **Make 10 Extended**: (with a 7) $7 + 4, 70 + 40, 700 + 400, 7000 + 4000$
Practice Items

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40 + 40 =</td>
<td>3000 + 2000 =</td>
<td>811 + 0 =</td>
</tr>
<tr>
<td>90 + 90 =</td>
<td>40 + 60 =</td>
<td>70 + 20 =</td>
</tr>
<tr>
<td>50 + 50 =</td>
<td>50 + 30 =</td>
<td>30 + 20 =</td>
</tr>
<tr>
<td>300 + 300 =</td>
<td>700 + 500 =</td>
<td>60 + 20 =</td>
</tr>
<tr>
<td>7000 + 7000 =</td>
<td>100 + 300 =</td>
<td>800 + 200 =</td>
</tr>
<tr>
<td>2000 + 2000 =</td>
<td>0 + 47 =</td>
<td>100 + 200 =</td>
</tr>
<tr>
<td>70 + 80 =</td>
<td>376 + 0 =</td>
<td>4000 + 2000 =</td>
</tr>
<tr>
<td>50 + 60 =</td>
<td>5678 + 0 =</td>
<td></td>
</tr>
<tr>
<td>7000 + 8000 =</td>
<td>0 + 9098 =</td>
<td></td>
</tr>
</tbody>
</table>

Add Your Own Practice Items
B. Fact Learning – Subtraction

• Reviewing Subtraction Facts and Fact Learning Strategies
 At the beginning of Grade 4, it is important to ensure that students review the subtraction facts to 18 and the related fact learning strategies. All subtraction facts can be completed using a “think addition” strategy, especially by students who know their addition facts very well. In addition, there are other thinking strategies that will help students master the subtraction facts.

 All subtraction facts can be completed using a “think addition” strategy, especially by students who know their addition facts very well.

• Up Through 10:
 This strategy involves counting the difference between the two numbers by starting with the smaller number, keeping track of the distance to ten, and then adding this amount to the rest of the distance to the greater number.

Examples
 a) For 12 – 7, think, “Starting at 7, it’s 3 to get to 10 and then 2 more to get to 12, so that’s 5 altogether”

 b) For 16 – 9, think, “It’s 1 from 9 to get to 10, and then 6 more to 16, so that’s 7 altogether”

• Back Down Through 10:
 With this strategy, you start with the larger number and subtract part of the subtrahend to get to 10, and then subtract the rest of the subtrahend.

Examples
 a) For 15 – 8, think, “15 subtract 5 (one part of the 8) gets me to 10, and then 3 more (the rest of the 8) takes me to 7.”

 b) For 13 – 4, think, “13 subtract 3 is 10, and then 1 more takes me to 9”
C. Fact Learning – Multiplication

- Multiplication Fact Learning Strategies
 In grade 4, the expectation is that most students will have mastered the multiplication facts with products to 81 by the end of the year. In our provincial math curriculum we want students to be directly taught specific strategies that will help them learn their facts. With a strategy approach to fact mastery, the 100 multiplication facts are clustered and taught according to similarities that certain strategies work for.

- x2 Facts (with turnarounds): 2x2, 2x3, 2x4, 2x5, 2x6, 2x7, 2x8, 2x9
 These are directly related to the addition doubles and teachers need to make this connection clear. For example, 3 + 3 is double 3 (6); 3 x 2 and 2 x 3 are also double 3

- Nifty Nines (with turnarounds): 6x9, 7x9, 8x9, 9x9

Following are the strategies to be introduced by the teacher, in sequence, starting at grade 3 and continuing through grade 6 for those students who need them. An understanding of the commutative or “turnaround” property in multiplication greatly reduces the number of facts to be mastered.

- Nifty Nines (with turnarounds): 6x9, 7x9, 8x9, 9x9

There are two patterns in the nine-times table that students should discover:
1. When you multiply a number by 9, the digit in the tens place in the product is one less than the number being multiplied. For example in 6 x 9, the digit in the tens place of the product will be 5.

2. The two digits in the product must add up to 9. So in this example, the number that goes with 5 to make nine is 4. The answer, then, is 54.

Some students might also figure out their 9-times facts by multiplying first by 10, and then subtracting. For example, for 7 x 9 or 9 x 7, you could think “7 tens is 70, so 7 nines is 70 - 7, or 63.

• **Fives Facts** (with turnarounds): 5x3, 5x4, 5x5, 5x6, 5x7

It is easy to make the connection to the multiplication facts involving 5s using an analog clock.

For example, if the minute hand is on the 6 and students know that means 30 minutes after the hour, then the connection to 6 x 5 = 30 can be made. This is why you may see the Five Facts referred to as the “clock facts.” This would be the best strategy for students who know how to tell time on an analog clock, a specific outcome from the grade 3 curriculum. You should also introduce the two patterns that result when numbers are multiplied by 5:

1. For even numbers multiplied by 5, the answer always ends in zero, and the digit in the tens place is half the other number. So, for 8 x 5, the product ends in 0 and half of 8 is 4. Therefore, 5 x 8 = 40.

2. For odd numbers multiplied by 5, the product always ends in 5, and the digit in the tens place is half of the number that comes before the other number. So, for 5 x 9, the product ends in 5 and half of the number that comes before 9 (8) is 4, so 5 x 9 = 45.
• **Ones Facts** (with turnarounds): 1x1, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 1x8, 1x9

While the ones facts are the “no change” facts, it is important that students understand why there is no change. Many students get these facts confused with the addition facts involving 1. For example, 6 × 1 means six groups of 1 or 1 + 1 + 1 + 1 + 1 + 1 and 1 × 6 means one group of 6. It is important to avoid teaching arbitrary rules such as “any number multiplied by one is that number”. Students will come to this rule on their own given opportunities to develop understanding.

It is important to avoid teaching arbitrary rules such as “any number multiplied by one is that number”. Students will come to this rule on their own given opportunities to develop understanding.

• **The Tricky Zeros Facts**

As with the ones facts, students need to understand why these facts all result in zero because they are easily confused with the addition facts involving zero. Teachers must help students understand the meaning of the number sentence.

Teachers must help students understand the meaning of the number sentence.

For example: 6 × 0 means “six 0’s or “six sets of nothing.”

For example:

6 × 0 means “six 0’s or “six sets of nothing.” This could be shown by drawing six boxes with nothing in each box. 0 × 6 means “zero sets of 6.” Ask students to use counters or blocks to build two sets of 6, then 1 set of 6 and finally zero sets of 6 where they don’t use any counters or blocks. They will quickly realize why zero is the product. Similar to the previous strategy for teaching the ones facts, it is important not to teach
a rule such as “any number multiplied by zero is zero”. Students will come to this rule on their own, given opportunities to develop understanding.

• **Threes Facts** (with turnarounds): 3x3, 3x4, 3x6, 3x7, 3x8, 3x9
The strategy here, is for students to think “times 2, plus another group”. So for 7 x 3 or 3 x 7, the student should think “7 times 2 is 14, plus 7 more is 21”.

• **Fours Facts** (with turnarounds): 4x4, 4x6, 4x7, 4x8, 4x9

One strategy that works for any number multiplied by 4 is “double-double”. For example, for 6 x 4, you would double the 6 (12) and then double again (24).

One strategy that works for any number multiplied by 4 is “double-double”. For example, for 6 x 4, you would double the 6 (12) and then double again (24). Another strategy that works any time one (or both) of the factors is even, is to divide the even number in half, then multiply, and then double your answer. So, for 7 x 4, you could multiply 7 x 2 (14) and then double that to get 28. For 16 x 9, think 8 x 9 (72) and 72 + 72 = 70 + 70 (140) plus 4 = 144.

• **The Last Six Facts**

After students have worked on the previous seven strategies for learning the multiplication facts, there are only six facts left to be learned.
After students have worked on the above seven strategies for learning the multiplication facts, there are only six facts left to be learned and their turnarounds: 6×6, 6×7, 6×8, 7×7; 7×8 and 8×8. At this point, the students themselves can probably suggest strategies that will help with quick recall of these facts. You should put each fact before them and ask for their suggestions.
Multiplication Facts With Products to 81 – Clustered by Thinking Strategy and in Sequence

Facts With 2 (addition doubles)
- 2x1 1x2
- 2x2 2x2
- 2x3 3x2
- 2x4 4x2
- 2x5 5x2
- 2x6 6x2
- 2x7 7x2
- 2x8 8x2
- 2x9 9x2

Facts With 9 (Patterns)
- 9x1 1x9
- 9x2 2x9
- 9x3 3x9
- 9x4 4x9
- 9x5 5x9
- 9x6 6x9
- 9x7 7x9
- 9x8 8x9
- 9x9

Facts With 10
(Not officially a “basic fact”, but included here since our number system is base-ten)
- 10x1 1x10
- 10x2 2x10
- 10x3 3x10
- 10x4 4x10
- 10x5 5x10
- 10x6 6x10
- 10x7 7x10
- 10x8 8x10
- 10x9 9x10
- 10x10

Facts With 5 (Clock Facts)
- 5x1 1x5
- 5x2 2x5
- 5x3 3x5
- 5x4 4x5
- 5x5
- 5x6 6x5
- 5x7 7x5
- 5x8 8x5
- 5x9 9x5

Facts With 4 (Double-Double)
- 4x1 1x4
- 4x2 2x4
- 4x3 3x4
- 4x4
- 4x5 5x4
- 4x6 6x4
- 4x7 7x4
- 4x8 8x4
- 4x9 9x4

Square Facts
(These facts (and others like them) form square arrays)
- 3x3
- 4x4
- 6x6
- 7x7
- 8x8

Facts With 3 (Double-plus 1 more set)
- 3x6 6x3
- 3x7 7x3
- 3x8 8x3

Facts With 0
(Facts with zero have products of zero)
- 0x0
- 0x1 1x0
- 0x2 2x0
- 0x3 3x0
- 0x4 4x0
- 0x5 5x0
- 0x6 6x0
- 0x7 7x0
- 0x8 8x0
- 0x9 9x0

Last 6 Facts
- 6x7 7x6
- 6x8 8x6
- 7x8 8x7
Mental Computation
D. Mental Computation – Addition

• Front-End Addition (Extension)
 This strategy involves adding the highest place values and then adding the sums of the next place value(s). Start by modelling the addition of two 2-digit numbers using base ten blocks. For 24 + 35, you would use 2 rods and 4 unit cubes for 24, and 3 rods, 5 unit cubes for 35. Join these two amounts by combining the rods first and then the unit cubes.

 Students should also be given the opportunity to model addition in this manner. In Grade 4, the Front-End Addition strategy is extended to numbers in the thousands.

Examples
 For 37 + 26, think: “30 and 20 is 50 and 7 and 6 is 13; 50 plus 13 is 63.”
 For 450 + 380, think, “400 and 300 is 700, 50 and 80 is 130; 700 plus 130 is 830.”
 For 3300 + 2800, think, “3000 and 2000 is 5000, 300 and 800 is 1100; 500 plus 1100 is 6100.”
 For 2 070 + 1 080, think, “2000 and 1000 is 3000, 70 and 80 is 150, and 3000 and 150 is 3150.”

To become more efficient in performing mental calculations, students need to develop a variety of strategies.
Practice Items

a) Numbers in the 10s

\[
34 + 18 = \quad 53 + 29 = \\
15 + 66 = \quad 74 + 19 =
\]

b) Numbers in the 100s

\[
190 + 430 = \\
340 + 220 = \\
470 + 360 = \\
607 + 304 =
\]

c) Numbers in the 1000s (New in Grade 4)

\[
3200 + 4500 = \quad 4200 + 5300 = \quad 6100 + 2800 = \\
7700 + 1100 = \quad 5200 + 3400 = \quad 4700 + 2400 = \\
6300 + 1800 = \quad 7800 + 2100 = \quad 10300 + 4400 =
\]

Add your own practice items
• **Break Up and Bridge (Extension)**
 This strategy is similar to front-end addition except that you begin with all of the first number and then add on parts of the second number beginning with the largest place value. Again, you should start by modelling the addition of two 2-digit numbers using base ten blocks. For 24 + 35, you would use 2 rods and 4 unit cubes for 24, and 3 rods, 5 unit cubes for 35. Join these two amounts by combining the 2 rods and 4 units with just the 3 rods in the second number for a sum of 54. Now, add on the remaining 5 unit cubes for a total of 59.

Students should also be given the opportunity to model addition in this manner. In Grade 4, the Break Up and Bridge strategy is extended to include numbers in the hundreds.

Examples

For 45 + 36, think, “45 and 30 (from the 36) is 75, and 75 plus 6 (the rest of the 36) is 81.”

For 537 + 208, think, “537 and 200 is 737, and 737 plus 8 is 745.”

Practice Items

a) **Numbers in the 10s**

37 + 45 = 72 + 28 = 25 + 76 =
38 + 43 = 59 + 15 = 66 + 27 =

b) **Numbers in the 100s**

325 + 220 = 301 + 435 = 747 + 150 =
439 + 250 = 506 + 270 = 645 + 110 =
142 + 202 = 370 + 327 = 310 + 518 =

Add your own practice items
• **Finding Compatibles (Extension)**

Compatible numbers are sometimes referred to as friendly numbers or nice numbers in other professional resources. This strategy for addition involves looking for pairs of numbers that combine to make a sum that will be easy to work with. Some examples of common compatible numbers include 1 and 9; 40 and 60; 75 and 25 and 300 and 700.

Examples

For 3 + 8 + 7 + 6 + 2, think, “3 and 7 is 10, 8 and 2 is 10, so 10 and 10 and 6 is 26.”

For 25 + 47 + 75, think, “25 and 75 is 100, so 100 plus 47 is 147”

For 400 + 720 + 600, think, “400 and 600 is 1000, and 1000 plus 720 is 1720.”

Practice Items

a) Numbers in the 1s and 10s

\[
\begin{align*}
6 + 9 + 4 + 5 + 1 &= \hspace{1cm} 5 + 3 + 5 + 7 + 4 = \\
2 + 4 + 3 + 8 + 6 &= \hspace{1cm} 9 + 5 + 8 + 1 + 5 = \\
4 + 6 + 2 + 3 + 8 &= \hspace{1cm} 2 + 7 + 6 + 3 + 8 = \\
7 + 1 + 3 + 9 + 5 &= \hspace{1cm} 9 + 4 + 6 + 5 + 1 = \\
4 + 5 + 6 + 2 + 5 &= \hspace{1cm} 30 + 20 + 70 + 80 = \\
60 + 30 + 40 &= \hspace{1cm} 50 + 15 + 25 + 5 = \\
75 + 95 + 25 &= \hspace{1cm} 25 + 20 + 75 + 40 =
\end{align*}
\]
b) Numbers in the 100s

\[
\begin{align*}
300 + 437 + 700 &= 310 + 700 + 300 = 25 + 25 + 25 = \\
800 + 740 + 200 &= 750 + 250 + 330 = 25 + 50 + 25 = \\
900 + 100 + 485 &= 200 + 225 + 800 = 350 + 75 + 50 =
\end{align*}
\]

Add your own practice items
• Compensation (Extension)

This strategy involves changing one number in a sum to a nearby ten or hundred, carrying out the addition using that ten or hundred, and then adjusting the answer to compensate for the original change. Some students may have already used this strategy when learning their facts involving 9s in Grade 2; for example, for $9 + 7$, they may have added $10 + 7$ and then subtracted 1.

Situations must be regularly provided to ensure that students have sufficient practice with mental math strategies and that they use their skills as required.

Students should understand that the reason a number is changed is to make it more compatible and easier to work with. They must also remember to adjust their answer to account for the change that was made.

Examples

For $52 + 39$, think, “52 plus 40 is 92, but I added 1 too many to take me to the next 10, so I subtract one from my answer to get 91.”

For $345 + 198$, think, “345 + 200 is 545, but I added 2 too many; so I subtract 2 from 545 to get 543.”

Practice Items

a) Numbers in the 10s

$$43 + 9 = \\ 56 + 8 = \\ 72 + 9 =$$

$$45 + 8 = \\ 65 + 29 = \\ 13 + 48 =$$

$$44 + 27 = \\ 14 + 58 = \\ 21 + 48 =$$

b) Numbers in the 100s

$$255 + 49 = \\ 371 + 18 = \\ 125 + 49 =$$

$$504 + 199 = \\ 326 + 298 = \\ 412 + 499 =$$

$$826 + 99 = \\ 304 + 399 = \\ 526 + 799 =$$

Add your own practice items
• **Make 10s, 100s, or 1000s (Extension)**

Make Ten is a thinking strategy introduced in grade 2 for addition facts which have an 8 or a 9 as one of the addends. It involves taking part of the other number and adding it to the 8 or 9 to make a 10 and then adding on the rest.

For example:

For 8 + 6, you take 2 from the 6 and give it to the 8 to make 10 + 4.
Students should understand that the purpose of this strategy is to get a 10 which is easy to add.

A common error occurs when students forget that the other addend has changed as well. This strategy should be compared to the compensation strategy. As well, the “make 10” strategy can be extended to facts involving 7. For 7 + 4, think: 7 and 3 (from the 4) is 10, and 10 + 1 (the other part of the 4) is 11.

In Grade 3, students would have applied this same strategy to sums involving single-digit numbers added to 2-digit numbers as a “make 10s” strategy. In Grade 4, this strategy should be extended to “make 100s” and “make 1000s.”

Examples

For 58 + 6, think, “58 plus 2 (from the 6) is 60, and 60 plus 4 (the other part of 6) is 64.”

For 350 + 59, think, “350 plus 50 is 400, and 400 plus 9 is 409.”

For 7400 + 790, think, “7400 plus 600 is 8000, and 8000 plus 190 is 8190.”

Modelling some examples of the numbers with base-10 blocks, combining the blocks physically in the same way that you would mentally, will help students understand the logic of the strategy.
Practice Items

a) Numbers in the 10s

5 + 49 =
17 + 4 =
29 + 3 =
38 + 5 =

b) Numbers in the 100s

680 + 78 = 490 + 18 = 170 + 40 =
570 + 41 = 450 + 62 = 630 + 73 =
560 + 89 = 870 + 57 = 780 + 67 =

c) Numbers in the 1000s

2800 + 460 = 5900 + 660 = 1700 + 870 =
8900 + 230 = 3500 + 590 = 2200 + 910 =
3600 + 522 = 4700 + 470 = 6300 + 855 =

Add your own practice items
E. Mental Computation – Subtraction

• Using Subtraction Facts for 10s, 100s, and 1000s (New)

This strategy involves the subtraction of two numbers in the tens, hundreds, or thousands as if they were single-digit subtraction facts, and then applying the place value to the answer.

Examples
For 80 – 30, think, “8 tens subtract 3 tens is 5 tens, or 50.”
For 500 – 200, think, “5 hundreds subtract 2 hundreds is 3 hundreds, or 300.”
For 9000 – 4000, think, “9 thousands subtract 4 thousands is 5 thousands, or 5000.”

Students should continue to practice mental math strategies. It is recommended that regular, maybe daily, practice be provided.

Practice Items

a) Numbers in the 10s

 90 - 10 = 60 – 30 = 70 – 60 =

 40 – 10 = 30 – 20 = 20 – 10 =

 80 – 30 = 70 – 40 = 70 – 50 =

b) Numbers in the 100s

 700 – 300 = 400 – 100 = 800 – 700 =

 600 – 400 = 200 – 100 = 500 – 300 =

 300 – 200 = 900 – 100 = 800 – 300 =
c) Numbers in the 1000s

2000 – 1000 = 8000 – 5000 =
7000 – 4000 = 9000 – 1000 =
6000 – 3000 = 4000 – 3000 =
10 000 – 7000 = 10 000 – 8000 =

Add your own practice items
• **Back Down Through 10/100(Extension)**

This strategy extends one of the strategies students learned in Grade 3 for fact learning (See Fact Learning – Subtraction in this booklet). It involves subtracting a part of the subtrahend to get to the nearest ten or hundred, and then subtracting the rest of the subtrahend.

Examples

For 15 – 8, think: “15 subtract 5 (one part of the 8) is 10, and 10 subtract 3 (the other part of the 8) is 7.”

For 74 – 6, think: “74 subtract 4 (one part of the 6) is 70 and 70 subtract 2 (the other part of the 6) is 68.”

For 530 – 70, think: “530 subtract 30 (one part of the 70) is 500 and 500 subtract 40 (the other part of the 70) is 460.”

Practice Items

a) Numbers in the 10s

15 – 6 = 42 – 7 = 34 – 7 =
13 – 4 = 61 - 5 = 82 – 6 =
13 – 6 = 15 – 7 = 14 – 6 =
74 – 7 = 97 – 8 = 53 – 5 =

b) Numbers in the 100s

850 – 70 = 970 – 80 = 810 – 50 =
420 – 60 = 340 – 70 = 630 – 60 =
760 – 70 = 320 – 50 = 462 – 70 =

Add your own practice items
• **Up Through 10/100 (Extension)**
 This strategy is an extension of the “Up through 10” strategy that students learned in Grade 3 to help master the subtraction facts (See Fact Learning – Subtraction in this booklet).

 To apply this strategy, you start with the smaller number (the subtrahend) and keep track of the distance to the next 10 or 100, and then add this amount to the rest of the distance to the greater number (the minuend).

 Examples
 For 12 – 9, think, “It’s 1 from 9 to 10 and 2 from 10 to 12; so the difference is 1 plus 2, or 3.”

 For 84 – 77, think, “It’s 3 from 77 to 80 (the next ten) and 4 more to get to 84; so that’s a difference of 7.”

 For 613 – 594, think, “594 is 6 away from 600 and then 13 more is 19 altogether.”

 Practice Items
 a) **Numbers in the 10s**
 15 -8 = 14 – 9 = 16 – 9 =
 11 -7 = 17 – 8 = 13 – 6 =
 12 – 8 = 15 – 6 = 16 – 7 =
 95 – 86 = 67 – 59 = 46 – 38 =
 58 – 49 = 34 – 27 = 71 – 63 =

 b) **Numbers in the 100s**
 715 – 698 = 612 – 596 = 817 – 798 =
 411 – 398 = 916 – 897 = 513 – 498 =
 727 – 698 = 846 – 799 = 631 – 597 =

 Add your own practice items
• **Compensation (New Strategy)**
 This strategy for subtraction involves changing the subtrahend (the amount being subtracted) to the nearest 10 or 100, carrying out the subtraction, and then adjusting the answer to compensate for the original change.

Examples
For $17 - 9$, think, “I can change 9 to 10 and then subtract $17 - 10$; that gives me 7, but I only need to subtract 9, so I'll add 1 back on. My answer is 8.”

For $56 - 18$, think, “I can change 18 to 20 and then subtract $56 - 20$; that gives me 36, but I only need to subtract 18, so I'll add 2 back on. My answer is 38.”

For $85 - 29$, think, “$85 - 30 = 55$ and when I add the 1 back on I get 56.”

For $145 - 99$, think, “$145 - 100$ is 45, but I subtracted 1 too many; so, I add 1 to 45 to get 46.”

For $756 - 198$, think: “$756 - 200 = 556$, and $556 + 2 = 558$”

Practice Items

a) **Numbers in the 10s**
 - $15 - 8 = \quad 17 - 9 = \quad 83 - 28 =$
 - $74 - 19 = \quad 84 - 17 = \quad 92 - 39 =$
 - $65 - 29 = \quad 87 - 9 = \quad 73 - 17 =$

b) **Numbers in the 100s**
 - $673 - 99 = \quad 854 - 399 = \quad 953 - 499 =$
 - $775 - 198 = \quad 534 - 398 = \quad 647 - 198 =$
 - $641 - 197 = \quad 802 - 397 = \quad 444 - 97 =$
 - $765 - 99 = \quad 721 - 497 = \quad 513 - 298 =$

Add your own practice items
• **Break Up and Bridge (New)**
With this subtraction strategy, you start with the larger number (the minuend) and subtract the highest place value of the second number first, and then the rest of the subtrahend.

Examples
For 92 – 26, think, “92 subtract 20 (from the 26) is 72 and 72 subtract 6 is 66.”
For 745 – 203, think, “745 subtract 200 (from the 203) is 545 and 545 minus 3 is 542.”

Practice Items

a) Numbers in the 10s

 \[
 \begin{align*}
 73 - 37 &= 93 - 74 = 98 - 22 = \\
 77 - 42 &= 74 - 15 = 77 - 15 = \\
 95 - 27 &= 85 - 46 = 67 - 42 = \\
 52 - 33 &= 86 - 54 = 156 - 47 =
 \end{align*}
 \]

b) Numbers in the 100s

 \[
 \begin{align*}
 736 - 301 &= 848 - 220 = 927 - 605 = \\
 632 - 208 &= 741 - 306 = 758 - 240 = \\
 928 - 210 &= 847 - 402 = 746 - 330 = \\
 647 - 120 &= 3580 - 130 = 9560 - 350 =
 \end{align*}
 \]

Add your own practice items
F. Mental Computation – Multiplication

• **Multiplying by 10 and 100 Using a Place-Value-Change Strategy**

 This strategy involves keeping track of how the place values change when a number is multiplied by 10 or 100.

 Start with single-digit numbers multiplied by 10. For example, in $8 \times 10 = 80$, the 8 ones becomes 8 *tens*, an increase of 1 place value. When 8 is multiplied by 100 for a product of 800, the 8 ones increases two places to 8 *hundred*.

 Allow students to examine the number patterns that results when we multiply 2-digit numbers by 10 or 100. All the place values of the number being multiplied *increase* one place when multiplying by 10 and two places when multiplying by 100.

 Examples

 For 24×10, the 2 tens increases one place to 2 hundreds and the 4 ones increases one place to 4 tens.

 For 36×100, the 3 tens increases two places to 3 thousands and the 6 ones increases two places to 6 hundreds, 3600.

 While some students may see the pattern that one zero gets attached to the original number when multiplying by 10, and two zeros get attached when multiplying by 100, this is not the best way to introduce these products. Later, when students are working with decimals, such as 100×0.12, using the “place-value-change strategy” will be more meaningful than the “attach-zeros strategy” and it will more likely produce a correct answer!

 Later, when students are working with decimals, such as 100×0.12, using the “place-value-change strategy” will be more meaningful than the “attach-zeros strategy” and it will more likely produce a correct answer!
Practice Items

<table>
<thead>
<tr>
<th>Expression</th>
<th>Expression</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 \times 53 =$</td>
<td>$10 \times 34 =$</td>
<td>$87 \times 10 =$</td>
</tr>
<tr>
<td>$10 \times 20 =$</td>
<td>$47 \times 10 =$</td>
<td>$78 \times 10 =$</td>
</tr>
<tr>
<td>$92 \times 10 =$</td>
<td>$10 \times 66 =$</td>
<td>$40 \times 10 =$</td>
</tr>
<tr>
<td>$100 \times 7 =$</td>
<td>$100 \times 2 =$</td>
<td>$100 \times 15 =$</td>
</tr>
<tr>
<td>$100 \times 74 =$</td>
<td>$100 \times 39 =$</td>
<td>$37 \times 100 =$</td>
</tr>
<tr>
<td>$10 \times 10 =$</td>
<td>$55 \times 100 =$</td>
<td>$100 \times 83 =$</td>
</tr>
<tr>
<td>$100 \times 70 =$</td>
<td>$00 \times 10 =$</td>
<td>$40 \times 100 =$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Conversion</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>5m = ___ cm</td>
<td>8m = ___ cm</td>
<td>3m = ___ cm</td>
</tr>
</tbody>
</table>
Estimation
G. Estimation – Addition and Subtraction

When asked to estimate, students often try to do the exact computation and then “round” their answer to produce an estimate that they think their teacher is looking for. Students need to see that estimation is a valuable and useful skill, one that is used on a daily basis by many people.

Students need to see that estimation is a valuable and useful skill, one that is used on a daily basis by many people.

Estimates can be very broad and general, or they can be quite close to the actual answer. It all depends on the reason for estimating in the first place, and these reasons can vary in context and according to the needs of the individual at the time.

Help students identify situations outside of school where they would estimate distances, number, temperature, length of time and discuss how accurate their estimates needed to be. Place these situations on an estimation continuum with broad, ball-park estimates at one end and estimates that are very close to the actual answer at the other.

For example:
In mathematics, it is essential that estimation strategies are used by students before attempting pencil/paper or calculator computations to help them determine whether or not their answers are reasonable.

When teaching estimation strategies, it is important to use words and phrases such as, about, almost, between, approximately, a little more than, a little less than, close to and near.

• **Rounding (Extension)**
 a) **Addition**
 This strategy for addition involves starting with the highest place values in each number, rounding them to the closest 10, 100 or 1000, and then adding the rounded numbers.

 Example
 For 378 + 230, think, “378 rounds to 400 and 230 rounds to 200; so, 400 plus 200 is 600.”

 When the digit 5 is involved in the rounding procedure for numbers in the 10s, 100s, and 1000s, the number can be rounded up or down depending upon the effect the rounding will have in the overall calculation. For example, if both numbers to be added are about 5, 50, or 500, it is better to round one number up and one number down to minimize the effect the rounding will have in the estimation.

 Examples
 For 45 + 65, think, “Since both numbers involve 5s, it would be best to round to 40 + 70 to get 110.”

 For 4520 + 4610, think, “Since both numbers are both close to 500, it would be best to round to 4000 + 5000 to get 9000.”
Students should estimate automatically whenever faced with a calculation. Facility with basic facts and mental math strategies is key to estimation.

Practice Items

a) Numbers in the 100s

426 + 587 = 218 + 411 = 520 + 679 =
384 + 910 = 137 + 641 = 798 + 387 =
223 + 583 = 490 + 770 = 684 + 824 =
530 + 660 = 350 + 550 = 450 + 319 =
250 + 650 = 653 + 128 = 179 + 254 =

b) Numbers in the 1000s

5184 + 2958 = 4867 + 6219 = 7760 + 3140 =
2410 + 6950 = 8879 + 4238 = 6853 + 1280 =
3144 + 4870 = 6110 + 3950 = 4460 + 7745 =
1370 + 6410 = 2500 + 4500 = 4550 + 4220 =

Add your own practice items

Ongoing practice in computational estimation is a key to developing understanding of numbers and number operations and increasing mental process skills.
b) **Subtraction**

For subtraction, the process of estimation is similar to addition, except for situations where both numbers are close to 5, 50, or 500. In these situations, both numbers should be rounded up. If you round one number up and one down, it will increase the difference between the two numbers and your estimate will be farther from the actual answer.

Examples

To estimate 594 - 203, think, “594 rounds to 600 and 203 rounds to 200; so, 600 - 200 is 400.”

To estimate 6237 – 2945, think, “6237 rounds to 6000 and 2945 rounds to 3000; so, 6000 - 3000 is 3000.”

To estimate 5549 – 3487, think, “Both numbers are close to 500, so round both up; 6000 - 4000 is 2000.”

Practice Items

a) Numbers in the 100s

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>427 - 192 =</td>
<td>984 - 430 =</td>
<td>872 - 389 =</td>
</tr>
<tr>
<td>594 - 313 =</td>
<td>266 - 94 =</td>
<td>843 - 715 =</td>
</tr>
<tr>
<td>834 - 587 =</td>
<td>947 - 642 =</td>
<td>782 - 277 =</td>
</tr>
</tbody>
</table>

b) Numbers in the 1000s

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4768 - 3068 =</td>
<td>6892 - 1812 =</td>
<td>7368 - 4817 =</td>
</tr>
<tr>
<td>4807 - 1203 =</td>
<td>7856 - 1250 =</td>
<td>5029 - 4020 =</td>
</tr>
<tr>
<td>8876 - 3640 =</td>
<td>9989 - 4140 =</td>
<td>1754 - 999 =</td>
</tr>
</tbody>
</table>

Add your own practice items

Computational estimation is a mental activity; therefore, regular oral practice, accompanied by the sharing of strategies must be provided.
• **Adjusted Front End (Extension)**
 This strategy begins with a front-end estimate and then making an adjustment by considering some or all the values in the other place values. This will result in a more accurate estimate.

Examples
To estimate 437 + 545, think, “400 plus 500 is 900, but this can be adjusted by thinking 30 and 40 is 70, so the adjusted estimate would be 90 + 70 = 970.”

To estimate 3237 + 2125, think: 3000 plus 2000 is 5000, and 200 plus 100 is 300, so the adjusted estimate is 5300.

To estimate 382 – 116, think: 300 subtract 100 is 200, and 80 – 10 is 70, so the adjusted estimate is 270.

To estimate 5674 – 2487, think: 5000 subtract 2000 is 3000, and 600 – 400 is 200, so the estimate can be adjusted to 3200

Practice Items

a) Estimating Sums
 256 + 435 = 519 + 217 = 327 + 275 =
 627 + 264 = 519 + 146 = 148 + 455 =
 5423 + 2218 = 2518 + 1319 = 7155 + 5216 =

b) Estimating Differences
 645 – 290 = 720 – 593 = 834 – 299 =
 935 – 494 = 468 – 215 = 937 – 612 =
 7742 – 3014 = 4815 – 2709 = 2932 – 1223 =
 9612 – 3424 = 5781 – 1139 = 4788 – 2225 =

Add your own practice items
• **Near Compatibles (New)**
When adding a list of numbers it is sometimes useful to look for two or three numbers that can be grouped to make 10 and 100 (compatible numbers). If there are numbers (near compatibles) that can be adjusted slightly to produce these compatibles, it will make finding an estimate easier.

Examples
For 44 + 33 + 62 + 71, think: 44 and 62 is almost 100, and 33 and 71 is almost 100; so, the estimate would be 100 + 100 = 200.

For 208 + 489 + 812 + 509, think: 208 and 812 is about 1000, and 489 and 509 is about 1000; so, the estimate is 1000 + 1000 = 2000.

For 612 – 289 + 397, think: 612 and 397 is about 1000, and 1000 subtract about 300 is 700.

Practice Items
32 + 62 + 71 + 41 =
51 + 21 + 53 + 82 =
33 + 67 + 72 =
44 + 38 + 62 =
73 – 11 – 22 + 1 =
476 – 74 + 27 - 33 =
76 + 81 + 22 + 24 =
11 + 71 + 92 + 33 =
67 – 8 - 2 + 21 =
52 – 3 – 7 + 10 =
153 – 31 - 22 + 1 =
239 – 43 + 54 - 62 =

Add your own practice items

Estimation must be used with all computations, but when an exact answer is required, students need to decide whether it is more appropriate to use a mental strategy, pencil and paper, or some form of technology.
Appendix 1

Thinking Strategies in Mental Math

Mental math proficiency represents one important dimension of mathematical knowledge. Not all individuals will develop rapid mental number skills to the same degree. Some will find their strength in mathematics through other avenues, such as visual or graphic representations or creativity in solving problems. But mental math has a clear place in school mathematics. It is an area where many parents and families feel comfortable offering support and assistance to their children.

The following table identifies all of the thinking strategies in *Mental Math: Fact Learning, Mental Computation and Estimation* and the grade level in which they are first introduced. These strategies are then extended and developed in subsequent years.

For example, Front End Addition involving 2-digit numbers is first introduced in grade 2, continued in grade 3, extended to 3-digit numbers in grade 4, and to decimal tenths, hundredths, and thousandths in grades 5 and 6. The teachers guide for each grade level contains a complete description of each strategy with examples and practice items.
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Operation</td>
<td>Students are able to identify common configuration sets of numbers such as the dots on a standard die, dominoes and dot cards without counting. Recognition of two parts in a whole. Leads to the understanding that numbers can be decomposed into component parts. Students can count on and back from a given number 0-9. Students are able to immediately state the number that comes after any given number from 0-9. Students can visualize the standard ten-frame representation of numbers and answer questions from their visual memories. Students are presented with a number and asked for the number that is one more, one less, two more, or two less than the number.</td>
</tr>
<tr>
<td>Grade 1</td>
<td></td>
</tr>
<tr>
<td>Addition Facts to 10</td>
<td>Doubles posters created as visual images Next number facts Ten-frame, skip counting, 2-more-than relationship, counting on Ten-frame, 2-more-than plus 1, counting on</td>
</tr>
<tr>
<td>Subtraction Facts With Minuends to 10</td>
<td>For 9 - 3, think, “3 plus what equals 9?” Visualize the minuend on a ten-frame, remove the subtrahend, to determine the difference. For -1, -2, -3 facts</td>
</tr>
<tr>
<td>Adding 10 to a Number</td>
<td>For numbers 11-20</td>
</tr>
<tr>
<td>Grade 2</td>
<td></td>
</tr>
<tr>
<td>Addition Facts to 18</td>
<td>Double the smaller number and add 1 Double the number in between No change facts For facts with 8 or 9 as addends. Eg. 7 + 9 is the same as 10 + 6</td>
</tr>
<tr>
<td>Subtraction Facts With Minuends to 18</td>
<td>For 13 - 8, think, “From 8 up to 10 is 2, and then 3 more is 5.” For 14 - 6, think, “14 - 4 gets me to 10, and then 2 more brings me to 8.”</td>
</tr>
<tr>
<td>Adding facts extended to numbers in the 10's</td>
<td>2-Apart Facts: 3 + 5 is double 4, so 30 + 50 is double 40.</td>
</tr>
<tr>
<td>Front-end Addition</td>
<td>Highest place values are totaled first and then added to the sum of the remaining place values.</td>
</tr>
<tr>
<td>Finding Compatibles</td>
<td>Looking for pairs of numbers that add easily, particularly, numbers that add to 10.</td>
</tr>
<tr>
<td>Compensation</td>
<td>One or both numbers are changed to make the addition easier and the answer adjusted to compensate for the change.</td>
</tr>
<tr>
<td>Rounding in Addition and Subtraction (5 or 50 not involved in rounding process until grade 4)</td>
<td>Round to nearest 10.</td>
</tr>
</tbody>
</table>
Grade 3

<table>
<thead>
<tr>
<th>Multiplication Facts With Products to 36</th>
<th>Introduced early in 3rd reporting period</th>
</tr>
</thead>
<tbody>
<tr>
<td>- x 2 facts</td>
<td>- Related to the addition doubles</td>
</tr>
<tr>
<td>- Fives</td>
<td>- Clock facts, patterns</td>
</tr>
<tr>
<td>- Nifty Nines</td>
<td>- Patterns, helping fact</td>
</tr>
<tr>
<td>- Ones</td>
<td>- No change facts</td>
</tr>
<tr>
<td>- Tricky Zeros</td>
<td>- Groups of zero</td>
</tr>
<tr>
<td>- Fours</td>
<td>- Double-double</td>
</tr>
<tr>
<td>- Threes</td>
<td>- Double plus 1 more set</td>
</tr>
</tbody>
</table>

| Break Up and Bridge | With this front-end strategy, you start with all of the first number and add it to the highest place value in the other number, and then add on the rest. |

| Front-End Estimation for Addition and Subtraction | Add or subtract just the largest place values in each number to produce a “ball park” estimate. |

| Adjusted Front-End Estimation for Addition and Subtraction | Same as above, except the other place values are considered for a more accurate estimate. |

Grade 4

| Make 10’s, 100’s, 1000’s for addition | 48 + 36 is the same as 50 + 34 which is 84 |

<table>
<thead>
<tr>
<th>Multiplication Facts With Products to 81</th>
<th>Mastery by year-end</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Last Six Facts</td>
<td>For facts not already covered by previous thinking strategies</td>
</tr>
</tbody>
</table>

| Subtraction facts extended to numbers in the 10’s, 100’s, 1000’s | Only 1 non-zero digit in each number eg. 600 - 400 = |

| Compensation (new for subtraction) | For 17-9, think, “17 - 10 is 7, but I subtracted 1 too many, so the answer is 8.” |

| Break Up and Bridge (new for subtraction) | For 92 - 26, think, “92 - 20 is 72 and then 6 more is 66.” |

| Multiply by 10 and 100 using a place-value-change strategy | The place values for a number multiplied by 100 increase 2 places. Eg. 34 x 100; The 4 ones becomes 4 hundreds and the 3 tens becomes 3 thousand; 3000 + 400 = 3400 |
| Grade 5 |
|-------------------|---------------------------------|
| **Division Facts With Dividends to 81**
 • “Think-Multiplication” | Mastery by year-end
 For 36 ÷ 6, think “6 times what equals 36?” |
| **Balancing for a Constant Difference** | Involves changing both number in a subtraction sentence by the same amount to make it easier to complete. The difference between the two numbers remains the same.
 Eg. for 27 - 16, add 3 to each number and think, “30 - 19 = 11” |
| **Multiply by 0.1, 0.01, 0.001 using a place-value-change strategy** | The place values for a number multiplied by 0.1 **decrease** 1 place.
 Eg. 34 x 0.1; The 4 ones becomes 4 tenths and the 3 tens becomes 3 ones; 3 and 4 tenths, or 3.4. |
| **Front-End Multiplication (Distributive Principle)** | Involves finding the product of the single-digit factor and the digit in the highest place value of the second factor, and adding to this product a second sub-product. 706 x 2 = (700 x 2) + (6 x 2) = 1412 |
| **Compensation in Multiplication** | Involves changing one factor to a 10 or 100, carrying out the multiplication, and then adjusting the product to compensate for the change. 7 x 198 = 7 x 200 (1400) subtract 14 = 1386 |
| **Divide by 10, 100, 1000 using a place-value-change strategy** | The place values for a number divided by 0.01 **increase** 2 places.
 Eg. 34 ÷ 0.01; The 4 ones becomes 4 hundreds and the 3 tens becomes 3 thousand; 3000 + 400 = 3400 |
| **Rounding in Multiplication** | Highest place values of factors are rounded and multiplied. When both numbers are close to 5 or 50, one number rounds up and the other down. |

| Grade 6 |
|-------------------|---------------------------------|
| **Divide by 0.1, 0.01, 0.001 using a place-value-change strategy** | The place values for a number divided by 0.01 **increase** 2 places.
 Eg. 34 ÷ 0.01; The 4 ones becomes 4 hundreds and the 3 tens becomes 3 thousand; 3000 + 400 = 3400 |
| **Finding Compatible Factors (Associative Property)** | Involves looking for pairs of factors, whose product is easy to work with, usually multiples of 10. For example, for 2 x 75 x 500, think, “2 x 500 = 1000 and 1000 x 75 is 75 000.” |
| **Halving and Doubling** | One factor is halved and the other is doubled to make the multiplication easier. Students would need to record sub-steps.
 For example, 500 x 88 = 1000 x 44 = 44 000. |
| **Using division facts for 10's, 100's 1000's** | Dividends in the 10's, 100's, and 1000's are divided by single digit divisors. The quotients would have only one digit that wasn’t a zero.
 For example, for 12 000 ÷ 4, think single digit division facts.
 12 ÷ 4 = 3, and thousands divided by ones is thousands, so the answer is 3000. |
| **Partitioning the Dividend (Distributive Property)** | The dividend is broken up into two parts that are more easily divided by the divisor. For example, for 372 ÷ 6, think, “(360 + 12) ÷ 6, so 60 + 2 is 62.” |
Appendix 2

Mental Math: Fact Learning, Mental Computation, Estimation (Scope and Sequence)

<table>
<thead>
<tr>
<th>FACT LEARNING</th>
<th>GRADE 1</th>
<th>GRADE 2</th>
<th>GRADE 3</th>
<th>GRADE 4</th>
<th>GRADE 5</th>
<th>GRADE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental Math</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRADE 1
- **Pre-Operation Strategies:**
 - Patterned Set Recognition for numbers 1-6 (not dependent on counting)
 - Part-Part-Whole Relationships
 - Counting on, Counting Back
 - Next Number
 - Ten Frame Recognition and Visualization for Numbers 0-10
 - One More/One Less and Two More/Two Less Relationships

GRADE 2
- **Addition Facts With Sums to 10 Thinking Strategies:**
 - Doubles
 - Plus 1 Facts
 - Plus 2 Facts
 - Plus 3 Facts
 - Ten Frame Facts

GRADE 3
- **Subtraction Facts With Minuends to 10 Thinking Strategies:**
 - Think Addition
 - Ten Frame Facts
 - Counting Back

GRADE 4
- **Addition and Subtraction Facts:**
 - Mastery of facts with sums and minuends to 10 by mid-year
 - Mastery of facts with sums and minuends to 10 by year end

GRADE 5
- **New Thinking Strategies for Addition:**
 - Near Doubles
 - 2-Apart Facts
 - Plus 0 Facts
 - Make 10 Facts

GRADE 6
- **New Thinking Strategies for Subtraction Facts:**
 - Up Through 10
 - Back Down Through 10

MENTAL COMPUTATION

GRADE 1
- **Addition:**
 - Adding 10 to a number without counting
 - Addition facts extended to 2-digit numbers. Think single-digit addition facts and apply the appropriate place value. (New)
 - Front End Addition (2-digit numbers)
 - Finding Compatible (single-digit number combinations that make 10)
 - Compensation (single-digit numbers)

GRADE 2
- **Subtraction:**
 - Think-Addition (extended to 2-digit numbers)
 - Back Down Through 10s (extended to subtraction of a single digit from a 2-digit number)
 - Up Through 10s (extended to 2-digit numbers)

GRADE 3
- **Addition:**
 - Front End Addition (continued from Grade 2)
 - Break Up and Bridge (New)
 - Finding Compatible (single-digit numbers)

GRADE 4
- **Addition:**
 - Front End Addition (extended to numbers in 10s, 100s, and 1000s)
 - Break Up and Bridge (extended to numbers in 100s, 1000s)

GRADE 5
- **Addition:**
 - Front End Addition (extended to decimal 10ths and 1000ths)
 - Break Up and Bridge (extended to numbers in 1000s and to decimal 10ths and 1000ths)
 - Finding Compatible (extended to decimal 10ths and 1000ths)

GRADE 6
- **Addition:**
 - Practice items provided for review of mental computation strategies for addition:
 - Front End
 - Break Up and Bridge
 - Finding Compatible
 - Compensation
 - Make 10s, 100s, 1000s

ESTIMATION

GRADE 1
- **Rounding in Addition and Subtraction (2-digit numbers):**
 - 5 is not involved in the rounding procedure until Grade 4

GRADE 2
- **Front End Addition and Subtraction (New):**
 - Rounding in Addition and Subtraction (extended to 3-digit numbers: 5 or 50 not involved in the rounding procedure until Grade 4)
 - Adjusted Front End in Addition and Subtraction (New)

GRADE 3
- **Rounding in Addition and Subtraction (extended to 4-Digit Numbers and involving 5, 50 and 500 in the rounding procedure):**
 - Adjusted Front End in Addition and Subtraction (extended to numbers in 1000s)

GRADE 4
- **Rounding in Addition and Subtraction (continued from Grade 4):**
 - Rounding in Multiplication (2-or-3-digit factor by single-digit factor; 2-digit by 2-digit)
 - Adjusted Front End for Addition and Subtraction (extended to decimal 10ths and 1000ths)

GRADE 5
- **Rounding in Addition and Subtraction (continued from Grade 5):**
 - Rounding in Multiplication (extended from Grade 5 to include 3-digits by 2-digits)
 - Rounding in Division (New)